Uniform pointwise estimates for ultraspherical polynomials

نویسندگان

چکیده

We prove pointwise bounds for two-parameter families of Jacobi polynomials. Our imply estimates a class functions arising from the spectral analysis distinguished Laplacians and sub-Laplacians on unit sphere in arbitrary dimension, are instrumental proof sharp multiplier theorems those operators.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize the probability distributions of finite all order moments having generating functions for orthogonal polynomials of ultraspherical type. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positive conditions ([9]). Th...

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize, up to a conjecture, probability distributions of finite all order moments with ultraspherical type generating functions for orthogonal polynomials. 1. Motivation: Meixner families There is a one to one correspondance between probability distributions on the real line and polynomials of a one variable satisfying a three-terms recurrence relation subject to some positivity condit...

متن کامل

Uniform and Pointwise Shape Preserving Approximation by Algebraic Polynomials

We survey developments, over the last thirty years, in the theory of Shape Preserving Approximation (SPA) by algebraic polynomials on a finite interval. In this article, “shape” refers to (finitely many changes of) monotonicity, convexity, or q-monotonicity of a function. It is rather well known that it is possible to approximate a function by algebraic polynomials that preserve its shape (i.e....

متن کامل

Ultraspherical Type Generating Functions for Orthogonal Polynomials

We characterize, under some technical assumptions and up to a conjecture, probability distributions of finite all order moments with ultraspherical type generating functions for orthogonal polynomials. Our method is based on differential equations and the obtained measures are particular Beta distributions. We actually recover the free Meixner family of probability distributions so that our met...

متن کامل

Differential Equations for Symmetric Generalized Ultraspherical Polynomials

We look for differential equations satisfied by the generalized Jacobi polynomials { P n (x) }∞ n=0 which are orthogonal on the interval [−1, 1] with respect to the weight function Γ(α+ β + 2) 2α+β+1Γ(α+ 1)Γ(β + 1) (1− x)(1 + x) +Mδ(x+ 1) +Nδ(x− 1), where α > −1, β > −1, M ≥ 0 and N ≥ 0. In the special case that β = α and N = M we find all differential equations of the form ∞ ∑ i=0 ci(x)y (x) =...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Comptes Rendus Mathematique

سال: 2022

ISSN: ['1631-073X', '1778-3569']

DOI: https://doi.org/10.5802/crmath.255